LangChain and Ollama are two different but complementary tools
1. Core Purpose
Tool | Primary Role | Use Cases |
---|---|---|
LangChain | Framework for building LLM workflows (connecting models, data, tools) | – QA bots – RAG – Autonomous agents |
Ollama | Lightweight tool to run open-source LLMs locally (simplifies model management) | – Local model testing – Privacy-sensitive apps – Offline development |
2. Key Differences
(1) Model Management
Feature | LangChain | Ollama |
---|---|---|
Model Support | Integrates multiple APIs/LLMs | Focuses on local models (Llama3, DeepSeek-R1, etc.) |
Model Loading | Manual setup required | ollama pull for one-click downloads |
Hardware Requirements | Depends on the connected model | Auto-optimized for local CPU/GPU |
(2) Application Development
Feature | LangChain | Ollama |
---|---|---|
Workflow Design | Advanced abstractions (Chains, Agents, Memory) | Basic model inference only |
External Tool Integration | Supports APIs, databases, etc. | No native integration |
Code Complexity | Steeper learning curve | Simple CLI/HTTP interface |
(3) Deployment
Feature | LangChain | Ollama |
---|---|---|
Deployment | Requires web frameworks (FastAPI/Flask) | Built-in server (ollama serve ) |
Multi-Model Switching | Flexible | Manual switching (ollama run <model> ) |
Distributed Support | Scalable | Single-machine only |
3. How They Work Together
They complement each other for local AI apps:
图表
代码
Example Integration (Christian Q&A Bot):
- Load a local model with Ollama:bashollama pull deepseek-r1 ollama run deepseek-r1
- Integrate with LangChain:pythonfrom langchain_community.llms import Ollama llm = Ollama(model=”deepseek-r1″)
4. When to Use Which?
Scenario | Recommended Tool | Reason |
---|---|---|
Quick local model testing | Ollama | Zero-code, CLI-only model interaction |
Production-grade complex apps | LangChain + Ollama | LangChain’s workflows + Ollama’s local models |
External data/tool integration | LangChain | Ollama lacks native support for databases/APIs |
Fully offline/private environments | Ollama | No cloud dependencies, all data local |
5. Code Examples
(1) Ollama Standalone
bash
ollama run llama3 "Explain the Trinity"
(2) LangChain Standalone (API-based)
python
from langchain_community.llms import DeepSeek llm = DeepSeek(api_key="your_key") print(llm.invoke("Define original sin"))
(3) LangChain + Ollama
python
from langchain_community.llms import Ollama from langchain.chains import RetrievalQA llm = Ollama(model="deepseek-r1") qa_chain = RetrievalQA.from_chain_type( llm=llm, retriever=vector_db.as_retriever() ) print(qa_chain.run("What is the significance of baptism?"))
6. Summary
- Ollama: A “model butler” for easy local LLM execution.
- LangChain: An “app architect” for building sophisticated AI workflows.
- Best combo: Use Ollama for local models + LangChain for app logic, balancing flexibility and privacy.