Differences between LangChain and Ollama

17/08/2025

LangChain and Ollama are two different but complementary tools

1. Core Purpose

ToolPrimary RoleUse Cases
LangChainFramework for building LLM workflows (connecting models, data, tools)– QA bots
– RAG
– Autonomous agents
OllamaLightweight tool to run open-source LLMs locally (simplifies model management)– Local model testing
– Privacy-sensitive apps
– Offline development

2. Key Differences

(1) Model Management

FeatureLangChainOllama
Model SupportIntegrates multiple APIs/LLMsFocuses on local models (Llama3, DeepSeek-R1, etc.)
Model LoadingManual setup requiredollama pull for one-click downloads
Hardware RequirementsDepends on the connected modelAuto-optimized for local CPU/GPU

(2) Application Development

FeatureLangChainOllama
Workflow DesignAdvanced abstractions (Chains, Agents, Memory)Basic model inference only
External Tool IntegrationSupports APIs, databases, etc.No native integration
Code ComplexitySteeper learning curveSimple CLI/HTTP interface

(3) Deployment

FeatureLangChainOllama
DeploymentRequires web frameworks (FastAPI/Flask)Built-in server (ollama serve)
Multi-Model SwitchingFlexibleManual switching (ollama run <model>)
Distributed SupportScalableSingle-machine only

3. How They Work Together

They complement each other for local AI apps:

图表

代码

Example Integration (Christian Q&A Bot):

  1. Load a local model with Ollama:bashollama pull deepseek-r1 ollama run deepseek-r1
  2. Integrate with LangChain:pythonfrom langchain_community.llms import Ollama llm = Ollama(model=”deepseek-r1″)

4. When to Use Which?

ScenarioRecommended ToolReason
Quick local model testingOllamaZero-code, CLI-only model interaction
Production-grade complex appsLangChain + OllamaLangChain’s workflows + Ollama’s local models
External data/tool integrationLangChainOllama lacks native support for databases/APIs
Fully offline/private environmentsOllamaNo cloud dependencies, all data local

5. Code Examples

(1) Ollama Standalone

bash

ollama run llama3 "Explain the Trinity"

(2) LangChain Standalone (API-based)

python

from langchain_community.llms import DeepSeek
llm = DeepSeek(api_key="your_key")
print(llm.invoke("Define original sin"))

(3) LangChain + Ollama

python

from langchain_community.llms import Ollama
from langchain.chains import RetrievalQA

llm = Ollama(model="deepseek-r1")
qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=vector_db.as_retriever()
)
print(qa_chain.run("What is the significance of baptism?"))

6. Summary

  • Ollama: A “model butler” for easy local LLM execution.
  • LangChain: An “app architect” for building sophisticated AI workflows.
  • Best combo: Use Ollama for local models + LangChain for app logic, balancing flexibility and privacy.